Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Int J Mol Sci ; 24(4)2023 Feb 06.
Article in English | MEDLINE | ID: covidwho-2233318

ABSTRACT

The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays a crucial role in its life cycle. The Mpro-mediated limited proteolysis of the viral polyproteins is necessary for the replication of the virus, and cleavage of the host proteins of the infected cells may also contribute to viral pathogenesis, such as evading the immune responses or triggering cell toxicity. Therefore, the identification of host substrates of the viral protease is of special interest. To identify cleavage sites in cellular substrates of SARS-CoV-2 Mpro, we determined changes in the HEK293T cellular proteome upon expression of the Mpro using two-dimensional gel electrophoresis. The candidate cellular substrates of Mpro were identified by mass spectrometry, and then potential cleavage sites were predicted in silico using NetCorona 1.0 and 3CLP web servers. The existence of the predicted cleavage sites was investigated by in vitro cleavage reactions using recombinant protein substrates containing the candidate target sequences, followed by the determination of cleavage positions using mass spectrometry. Unknown and previously described SARS-CoV-2 Mpro cleavage sites and cellular substrates were also identified. Identification of target sequences is important to understand the specificity of the enzyme, as well as aiding the improvement and development of computational methods for cleavage site prediction.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , HEK293 Cells , Cysteine Endopeptidases/metabolism , Electrophoresis , Protease Inhibitors/chemistry , Molecular Docking Simulation
2.
Int J Mol Sci ; 23(7)2022 Mar 23.
Article in English | MEDLINE | ID: covidwho-2216278

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome 2 (SARS-CoV-2), has been one of the most devastating pandemics of recent times. The lack of potent novel antivirals had led to global health crises; however, emergence and approval of potent inhibitors of the viral main protease (Mpro), such as Pfizer's newly approved nirmatrelvir, offers hope not only in the therapeutic front but also in the context of prophylaxis against the infection. By their nature, RNA viruses including human immunodeficiency virus (HIV) have inherently high mutation rates, and lessons learnt from previous and currently ongoing pandemics have taught us that these viruses can easily escape selection pressure through mutation of vital target amino acid residues in monotherapeutic settings. In this paper, we review nirmatrelvir and its binding to SARS-CoV-2 Mpro and draw a comparison to inhibitors of HIV protease that were rendered obsolete by emergence of resistance mutations, emphasizing potential pitfalls in the design of inhibitors that may be of important relevance to the long-term use of novel inhibitors against SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Protease Inhibitors , Antiviral Agents/chemistry , Coronavirus 3C Proteases , HIV Protease/genetics , Humans , Molecular Docking Simulation , Peptide Hydrolases , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2
3.
Front Immunol ; 13: 999233, 2022.
Article in English | MEDLINE | ID: covidwho-2109767

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease-19 (COVID-19). The spike protein (S) of SARS-CoV-2 plays a crucial role in mediating viral infectivity; hence, in an extensive effort to curb the pandemic, many urgently approved vaccines rely on the expression of the S protein, aiming to induce a humoral and cellular response to protect against the infection. Given the very limited information about the effects of intracellular expression of the S protein in host cells, we aimed to characterize the early cellular transcriptomic changes induced by expression of the S protein in THP-1-derived macrophage-like cells. Results showed that a wide variety of genes were differentially expressed, products of which are mainly involved in cell adhesion, homeostasis, and most notably, antiviral and immune responses, depicted by significant downregulation of protocadherins and type I alpha interferons (IFNAs). While initially, the levels of IFNAs were higher in the medium of S protein expressing cells, the downregulation observed on the transcriptomic level might have been reflected by no further increase of IFNA cytokines beyond the 5 h time-point, compared to the mock control. Our study highlights the intrinsic pathogenic role of the S protein and sheds some light on the potential drawbacks of its utilization in the context of vaccination strategies.


Subject(s)
COVID-19 , Interferon Type I , Humans , Spike Glycoprotein, Coronavirus , SARS-CoV-2 , Antiviral Agents/pharmacology , Protocadherins , Immunity , Macrophages/metabolism
4.
International Journal of Molecular Sciences ; 23(7):3507, 2022.
Article in English | MDPI | ID: covidwho-1762502

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome 2 (SARS-CoV-2), has been one of the most devastating pandemics of recent times. The lack of potent novel antivirals had led to global health crises;however, emergence and approval of potent inhibitors of the viral main protease (Mpro), such as Pfizer's newly approved nirmatrelvir, offers hope not only in the therapeutic front but also in the context of prophylaxis against the infection. By their nature, RNA viruses including human immunodeficiency virus (HIV) have inherently high mutation rates, and lessons learnt from previous and currently ongoing pandemics have taught us that these viruses can easily escape selection pressure through mutation of vital target amino acid residues in monotherapeutic settings. In this paper, we review nirmatrelvir and its binding to SARS-CoV-2 Mpro and draw a comparison to inhibitors of HIV protease that were rendered obsolete by emergence of resistance mutations, emphasizing potential pitfalls in the design of inhibitors that may be of important relevance to the long-term use of novel inhibitors against SARS-CoV-2.

5.
Int J Mol Sci ; 21(20)2020 Oct 16.
Article in English | MEDLINE | ID: covidwho-1298153

ABSTRACT

The non-structural protein 2 (nsP2) of alphavirus Venezuelan equine encephalitis virus (VEEV) is a cysteine protease that is responsible for processing of the viral non-structural polyprotein and is an important drug target owing to the clinical relevance of VEEV. In this study we designed two recombinant VEEV nsP2 constructs to study the effects of an N-terminal extension on the protease activity and to investigate the specificity of the elongated enzyme in vitro. The N-terminal extension was found to have no substantial effect on the protease activity. The amino acid preferences of the VEEV nsP2 protease were investigated on substrates representing wild-type and P5, P4, P2, P1, P1', and P2' variants of Semliki forest virus nsP1/nsP2 cleavage site, using a His6-MBP-mEYFP recombinant substrate-based protease assay which has been adapted for a 96-well plate-based format. The structural basis of enzyme specificity was also investigated in silico by analyzing a modeled structure of VEEV nsP2 complexed with oligopeptide substrate. To our knowledge, in vitro screening of P1' amino acid preferences of VEEV nsP2 protease remains undetermined to date, thus, our results may provide valuable information for studies and inhibitor design of different alphaviruses or other Group IV viruses.


Subject(s)
Encephalitis Virus, Venezuelan Equine/enzymology , Viral Proteases/chemistry , Catalytic Domain , Molecular Dynamics Simulation , Oligopeptides/chemistry , Oligopeptides/metabolism , Substrate Specificity , Viral Proteases/genetics , Viral Proteases/metabolism
6.
Viruses ; 13(6)2021 06 21.
Article in English | MEDLINE | ID: covidwho-1282643

ABSTRACT

Proteolytic enzymes have great significance in medicine and the pharmaceutical industry and are applied in multiple fields of life sciences. Therefore, cost-efficient, reliable and sensitive real-time monitoring methods are highly desirable to measure protease activity. In this paper, we describe the development of a new experimental approach for investigation of proteolytic enzymes. The method was designed by the combination of recombinant fusion protein substrates and bio-layer interferometry (BLI). The protease (PR) of human immunodeficiency virus type 1 (HIV-1) was applied as model enzyme to set up and test the method. The principle of the assay is that the recombinant protein substrates immobilized to the surface of biosensor are specifically cleaved by the PR, and the substrate processing can be followed by measuring change in the layer thickness by optical measurement. We successfully used this method to detect the HIV-1 PR activity in real time, and the initial rate of the signal decrease was found to be proportional to the enzyme activity. Substrates representing wild-type and modified cleavage sites were designed to study HIV-1 PR's specificity, and the BLI-based measurements showed differential cleavage efficiency of the substrates, which was proven by enzyme kinetic measurements. We applied this BLI-based assay to experimentally confirm the existence of extended binding sites at the surface of HIV-1 PR. We found the measurements may be performed using lysates of cells expressing the fusion protein, without primary purification of the substrate. The designed BLI-based protease assay is high-throughput-compatible and enables real-time and small-volume measurements, thus providing a new and versatile approach to study proteolytic enzymes.


Subject(s)
Enzyme Assays/methods , HIV Protease/metabolism , HIV-1/enzymology , Interferometry/methods , Biosensing Techniques , Cloning, Molecular , HIV Protease/genetics , HIV Protease/isolation & purification , Humans , Kinetics , Proteolysis , Recombinant Proteins , Sequence Analysis, DNA , Substrate Specificity
7.
Int J Mol Sci ; 21(24)2020 Dec 15.
Article in English | MEDLINE | ID: covidwho-1024586

ABSTRACT

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease-19 (COVID-19) being associated with severe pneumonia. Like with other viruses, the interaction of SARS-CoV-2 with host cell proteins is necessary for successful replication, and cleavage of cellular targets by the viral protease also may contribute to the pathogenesis, but knowledge about the human proteins that are processed by the main protease (3CLpro) of SARS-CoV-2 is still limited. We tested the prediction potentials of two different in silico methods for the identification of SARS-CoV-2 3CLpro cleavage sites in human proteins. Short stretches of homologous host-pathogen protein sequences (SSHHPS) that are present in SARS-CoV-2 polyprotein and human proteins were identified using BLAST analysis, and the NetCorona 1.0 webserver was used to successfully predict cleavage sites, although this method was primarily developed for SARS-CoV. Human C-terminal-binding protein 1 (CTBP1) was found to be cleaved in vitro by SARS-CoV-2 3CLpro, the existence of the cleavage site was proved experimentally by using a His6-MBP-mEYFP recombinant substrate containing the predicted target sequence. Our results highlight both potentials and limitations of the tested algorithms. The identification of candidate host substrates of 3CLpro may help better develop an understanding of the molecular mechanisms behind the replication and pathogenesis of SARS-CoV-2.


Subject(s)
COVID-19/virology , Coronavirus 3C Proteases/metabolism , SARS-CoV-2/enzymology , Alcohol Oxidoreductases/metabolism , Amino Acid Sequence , Coronavirus 3C Proteases/chemistry , Coronavirus 3C Proteases/genetics , DNA-Binding Proteins/metabolism , Host-Pathogen Interactions , Humans , SARS-CoV-2/genetics , Substrate Specificity
8.
Virol J ; 17(1): 190, 2020 11 26.
Article in English | MEDLINE | ID: covidwho-945221

ABSTRACT

BACKGROUND: The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in millions of infections worldwide. While the search for an effective antiviral is still ongoing, experimental therapies based on repurposing of available antivirals is being attempted, of which HIV protease inhibitors (PIs) have gained considerable interest. Inhibition profiling of the PIs directly against the viral protease has never been attempted in vitro, and while few studies reported an efficacy of lopinavir and ritonavir in SARS-CoV-2 context, the mechanism of action of the drugs remains to be validated. METHODS: We carried out an in-depth analysis of the efficacy of HIV PIs against the main protease of SARS-CoV-2 (Mpro) in cell culture and in vitro enzymatic assays, using a methodology that enabled us to focus solely on any potential inhibitory effects of the inhibitors against the viral protease. For cell culture experiments a dark-to-bright GFP reporter substrate system was designed. RESULTS: Lopinavir, ritonavir, darunavir, saquinavir, and atazanavir were able to inhibit the viral protease in cell culture, albeit in concentrations much higher than their achievable plasma levels, given their current drug formulations. While inhibition by lopinavir was attributed to its cytotoxicity, ritonavir was the most effective of the panel, with IC50 of 13.7 µM. None of the inhibitors showed significant inhibition of SARS-CoV-2 Mpro in our in vitro enzymatic assays up to 100 µM concentration. CONCLUSION: Targeting of SARS-CoV-2 Mpro by some of the HIV PIs might be of limited clinical potential, given the high concentration of the drugs required to achieve significant inhibition. Therefore, given their weak inhibition of the viral protease, any potential beneficial effect of the PIs in COVID-19 context might perhaps be attributed to acting on other molecular target(s), rather than SARS-CoV-2 Mpro.


Subject(s)
Coronavirus 3C Proteases/metabolism , HIV Protease Inhibitors/pharmacology , SARS-CoV-2/enzymology , Cell Survival/drug effects , HEK293 Cells , Humans , Inhibitory Concentration 50 , Proteolysis/drug effects , SARS-CoV-2/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL